Bandwidth selection for functional time series prediction
نویسندگان
چکیده
منابع مشابه
Some New Methods for Prediction of Time Series by Wavelets
Extended Abstract. Forecasting is one of the most important purposes of time series analysis. For many years, classical methods were used for this aim. But these methods do not give good performance results for real time series due to non-linearity and non-stationarity of these data sets. On one hand, most of real world time series data display a time-varying second order structure. On th...
متن کاملAdaptive bandwidth selection in the long run covariance estimator of functional time series
In the analysis of functional time series an object which has seen increased use is the long run covariance function. It arises in several situations, including inference and dimension reduction techniques for high dimensional data, and new applications are being developed routinely. Given its relationship to the spectral density of finite dimensional time series, the long run covariance is nat...
متن کاملInput Selection for Long-Term Prediction of Time Series
Prediction of time series is an important problem in many areas of science and engineering. Extending the horizon of predictions further to the future is the challenging and difficult task of long-term prediction. In this paper, we investigate the problem of selecting noncontiguous input variables for an autoregressive prediction model in order to improve the prediction ability. We present an a...
متن کاملNeural Network Model Selection for Financial Time Series Prediction
(i .. Can neural network model selection be guided by statistical procedures such as hypothesis tests, information criteria and cross-validation? Recently, Anders and Kom (1999) proposed five neural network model specification strategies based on different statistical procedures. In this paper, we use and adapt the Anders-Koru framework to find appropriate neural network models for financial ti...
متن کاملSemiparametric Bootstrap Prediction Intervals in time Series
One of the main goals of studying the time series is estimation of prediction interval based on an observed sample path of the process. In recent years, different semiparametric bootstrap methods have been proposed to find the prediction intervals without any assumption of error distribution. In semiparametric bootstrap methods, a linear process is approximated by an autoregressive process. The...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Statistics & Probability Letters
سال: 2009
ISSN: 0167-7152
DOI: 10.1016/j.spl.2008.10.028